Setting up a jupyter fastai ready environment on docker with 4 GPUs

First ensure that all the the. GPUs are visible using docker-nvidia

root@gpu-server:/home/mano# docker run --gpus all nvidia/cuda:11.6.2-cudnn8-runtime-ubuntu20.04 nvidia-smi

==========
== CUDA ==
==========

CUDA Version 11.6.2

Container image Copyright (c) 2016-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license

A copy of this license is made available in this container at /NGC-DL-CONTAINER-LICENSE for your convenience.

Fri Jan  6 00:36:05 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.161.03   Driver Version: 470.161.03   CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0  On |                  N/A |
|  0%   51C    P8    11W / 230W |    100MiB /  8118MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce ...  Off  | 00000000:02:00.0 Off |                  N/A |
|  0%   52C    P8     9W / 230W |      8MiB /  8119MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce ...  Off  | 00000000:04:00.0 Off |                  N/A |
|  0%   48C    P8    10W / 230W |      8MiB /  8119MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce ...  Off  | 00000000:05:00.0 Off |                  N/A |
|  0%   44C    P8     9W / 230W |      8MiB /  8119MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
root@gpu-server:/home/mano# 

Then get the docker image with GPU enabled :

root@gpu-server:~# docker run --gpus all -d -it -p 8848:8888 -v $(pwd)/data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root cschranz/gpu-jupyter:v1.4_cuda-11.2_ubuntu-20.04_python-only